97 research outputs found

    Trace element geochemistry of ordinary chondrite chondrules: the type I/type II chondrule dichotomy

    Full text link
    We report trace element concentrations of silicate phases in chondrules from LL3 ordinary chondrites Bishunpur and Semarkona. Results are similar to previously reported data for carbonaceous chondrites, with rare earth element (REE) concentrations increasing in the sequence olivine < pyroxene < mesostasis, and heavy REE (HREE) being enriched by 1-2 orders of magnitude (CI-normalized) relative to light REE (LREE) in ferromagnesian silicates, although no single olivine with very large LREE/HREE fractionation has been found. On average, olivine in type II chondrules is poorer in refractory lithophile incompatible elements (such as REE) than its type I counterpart by a factor of ~2. This suggests that olivine in type I and II chondrules formed by batch and fractional crystallization, respectively, implying that type II chondrules formed under faster cooling rates (> ~ 10 K/h) than type I chondrules. Appreciable Na concentrations (3-221 ppm) are measured in olivine from both chondrule types; type II chondrules seem to have behaved as closed systems, which may require chondrule formation in the vicinity of protoplanets or planetesimals. At any rate, higher solid concentrations in type II chondrule forming regions may explain the higher oxygen fugacities they record compared to type I chondrules. Type I and type II chondrules formed in different environments and the correlation between high solid concentrations and/or oxygen fugacities with rapid cooling rates is a key constraint that chondrule formation models must account for.Comment: 46 pages, 7 figure

    Circumstellar disks in high-mass star environments: the early solar system

    Get PDF
    The early solar system represents the only case we have of a circumstellar disk that can be investigated "in situ” -albeit 4.6 Gyr after its formation. Meteorites studies give mounting evidence for an intense irradiation phase of the young circumsolar disk by energetic particles, and also for contamination by products of high-mass stellar and/or explosive nucleosynthesis. We thus discuss the conditions of the birth of the solar system in a high-mass star environmen

    New Paradigms For Asteroid Formation

    Full text link
    Asteroids and meteorites provide key evidence on the formation of planetesimals in the Solar System. Asteroids are traditionally thought to form in a bottom-up process by coagulation within a population of initially km-scale planetesimals. However, new models challenge this idea by demonstrating that asteroids of sizes from 100 to 1000 km can form directly from the gravitational collapse of small particles which have organised themselves in dense filaments and clusters in the turbulent gas. Particles concentrate passively between eddies down to the smallest scales of the turbulent gas flow and inside large-scale pressure bumps and vortices. The streaming instability causes particles to take an active role in the concentration, by piling up in dense filaments whose friction on the gas reduces the radial drift compared to that of isolated particles. In this chapter we review new paradigms for asteroid formation and compare critically against the observed properties of asteroids as well as constraints from meteorites. Chondrules of typical sizes from 0.1 to 1 mm are ubiquitous in primitive meteorites and likely represent the primary building blocks of asteroids. Chondrule-sized particles are nevertheless tightly coupled to the gas via friction and are therefore hard to concentrate in large amounts in the turbulent gas. We review recent progress on understanding the incorporation of chondrules into the asteroids, including layered accretion models where chondrules are accreted onto asteroids over millions of years. We highlight in the end ten unsolved questions in asteroid formation where we expect that progress will be made over the next decade.Comment: Chapter to appear in the book ASTEROIDS IV, (University of Arizona Press) Space Science Series, edited by P. Michel, F. DeMeo and W. Bottk

    The formation conditions of enstatite chondrites: Insights from trace element geochemistry of olivine-bearing chondrules in Sahara 97096 (EH3)

    Full text link
    We report in situ LA-ICP-MS trace element analyses of silicate phases in olivine-bearing chondrules in the Sahara 97096 (EH3) enstatite chondrite. Most olivine and enstatite present rare earth element (REE) patterns comparable to their counterparts in type I chondrules in ordinary chondrites. They thus likely share a similar igneous origin, likely under similar redox conditions. The mesostasis however frequently shows negative Eu and/or Yb (and more rarely Sm) anomalies, evidently out of equilibrium with olivine and enstatite. We suggest that this reflects crystallization of oldhamite during a sulfidation event, already inferred by others, during which the mesostasis was molten, where the complementary positive Eu and Yb anomalies exhibited by oldhamite would have possibly arisen due to a divalent state of these elements. Much of this igneous oldhamite would have been expelled from the chondrules, presumably by inertial acceleration or surface tension effects, and would have contributed to the high abundance of opaque nodules found outside them in EH chondrites. In two chondrules, olivine and enstatite exhibit negatively sloped REE patterns, which may be an extreme manifestation of a general phenomenon (possibly linked to near-liquidus partitioning) underlying the overabundance of light REE observed in most chondrule silicates relative to equilibrium predictions. The silicate phases in one of these two chondrules show complementary Eu, Yb and Sm anomalies providing direct evidence for the postulated occurrence of the divalent state for these elements at some stage in the formation reservoir of enstatite chondrites. Our work supports the idea that the peculiarities of enstatite chondrites may not require a condensation sequence at high C/O ratios as has long been believed.Comment: 30 pages, 7 figure

    Bright Stuff on Ceres = Sulfates and Carbonates on CI Chondrites

    Get PDF
    Recent reports of the DAWN spacecraft's observations of the surface of Ceres indicate that there are bright areas, which can be explained by large amounts of the Mg sulfate hexahydrate (MgSO46(H2O)), although the identification appears tenuous. There are preliminary indications that water is being evolved from these bright areas, and some have inferred that these might be sites of contemporary hydro-volcanism. A heat source for such modern activity is not obvious, given the small size of Ceres, lack of any tidal forces from nearby giant planets, probable age and presumed bulk composition. We contend that observations of chondritic materials in the lab shed light on the nature of the bright spots on Cere

    In-Situ Oxygen Isotopic Composition of Tagish Lake: An Ungrouped Type 2 Carbonaceous Chondrite

    Get PDF
    We have measured the oxygen isotopic composition of several components of Tagish Lake by ion microprobe. This meteorite constitutes the best preserved sample of C2 matter presently available for study. It presents two different lithologies (carbonate-poor and -rich) which have fairly comparable oxygen isotopic composition, with regard to both the primary or secondary minerals. For the olivine and pyroxene grains, their delta O-18 values range from - 10.5% to + 7.4% in the carbonate-poor lithology, with a mean Delta O-17 value of - 3.7 2.4%. In the carbonate-rich lithology, delta O-18 varies from - 7.9% to + 3.3%, and the mean Delta O-17 value is - 4.7 +/- 1.4%. Olivine inclusions (Fo(sub >99)) with extreme O-16-enrichment were found in both lithologies: delta O-18 = - 46.1 %, delta O-187= - 48.3% and delta O-18 = - 40.6%, delta O-17 = - 41.2% in the carbonate-rich lithology; delta O-18 = - 41.5%, delta O-17 = -43.4%0 in the carbonate-poor lithology. Anhydrous minerals in the carbonate-poor lithology are slightly more O-16-rich than in the carbonate-rich one. Four low-iron manganese-rich (LIME) olivine grains do not have an oxygen isotopic composition distinct from the other "normal" olivines. The phyllosilicate matrix presents the same range of oxygen isotopic compositions in both lithologies: delta O-18 from approximately 11 % to approximately 6%, with an average Delta. O-17 approximately 0%. Because the bulk Tagish Lake oxygen isotopic composition given by Brown et al. is on the high end of our matrix analyses, we assume that this "bulk Tagish Lake" composition probably only represents that of the carbonate-rich lithology. Calcium carbonates have delta O-18 values up to 35%, with Delta O-17 approximately 0.5%0. Magnetite grains present very high Delta O-17 values approximately + 3.4%0 +/- 1.2%. Given our analytical uncertainties and our limited carbonate data, the matrix and the carbonate seem to have formed in isotopic equilibrium. In that case, their large isotopic fractionation would argue for a low temperature (CM-like, T approximately 0 deg) formation. Magnetite probably formed during a separate event. Tagish Lake magnetite data is surprisingly compatible with that of R-chondrites and unequilibrated ordinary (LL3) chondrites. Our oxygen isotope data strongly supports the hypothesis of a single precursor for both lithologies. Drastic mineralogical changes between the two lithologies not being accompanied with isotopic fractionation seem compatible with the alteration model presented by Young et aI. Tagish Lake probably represents the first well preserved large sample of the C2 matter that dominates interplanetary matter since the formation of the solar system

    Interstellar Heritage and the Birth Environment of the Solar System

    Get PDF
    In this chapter, we explore the origins of cometary material and discuss the clues cometary composition provides in the context of the origin of our solar system. The review focuses on both cometary refractory and volatile materials, which jointly provide crucial information about the processes that shaped the solar system into what it is today. Both areas have significantly advanced over the past decade. We also view comets more broadly and discuss compositions considering laboratory studies of cometary materials, including interplanetary dust particles and meteoritic material that are potential cometary samples, along with meteorites, and in situ/remote studies of cometary comae. In our review, we focus on key areas from elemental/molecular compositions, isotopic ratios, carbonaceous and silicate refractories, short-lived radionuclides, and solar system dynamics that can be used as probes of the solar birth environment. We synthesize this data that points towards the birth of our solar system in a clustered star-forming environment
    • …
    corecore